博客
关于我
PCL滤波 ProjectInliers平面投射
阅读量:238 次
发布时间:2019-03-01

本文共 1310 字,大约阅读时间需要 4 分钟。

#include 
#include
#include
#include
#include
intmain(int argc,char ** args){ pcl::PointCloud
::Ptr cloud(new pcl::PointCloud
()); pcl::PointCloud
::Ptr cloud_pj(new pcl::PointCloud
()); cloud->width = 5; cloud->height = 1; cloud->points.resize(cloud->width * cloud->height); for (auto& p : *cloud) { p.x = 1024 * rand() / (RAND_MAX + 1.0f); p.y = 1024 * rand() / (RAND_MAX + 1.0f); p.z = 1024 * rand() / (RAND_MAX + 1.0f); } std::cerr << "cloud before projection" << std::endl; for (const auto& p : *cloud) std::cout << " " << p.x << " " << p.y << " " << p.z << " " << std::endl; pcl::ModelCoefficients::Ptr mc(new pcl::ModelCoefficients()); //平面模型的方程为 ax+by+cz+d = 0,此时设置 a = b = d = 0,c =1,则平面为 z=0的平面,也就是 X-Y平面 //mc->values.resize(4); //mc->values[0] = mc ->values[1] = 0; //mc->values[2] = 1.0; //mc->values[3] = 0; //投射可以是任意的平面 mc->values.resize(4); mc->values[0] = mc->values[1] = 2; mc->values[2] = 1.0; mc->values[3] = 0; pcl::ProjectInliers
proj; proj.setModelType(pcl::SACMODEL_PLANE); proj.setInputCloud(cloud); proj.setModelCoefficients(mc); proj.filter(*cloud_pj); std::cerr << "Cloud after projection" << std::endl; for(const auto & p :*cloud_pj) std::cout << " " << p.x << " " << p.y << " " << p.z << " " << std::endl; return 0;}

转载地址:http://wrct.baihongyu.com/

你可能感兴趣的文章
MySQL索引一篇带你彻底搞懂(一次讲清实现原理加优化实战,面试必问)
查看>>
MySQL索引下沉:提升查询性能的隐藏秘
查看>>
MySql索引为什么使用B+树
查看>>
MySQL索引为什么是B+树
查看>>
WARNING!VisualDDK wizard was unable to find any DDK/WDK installed on your system.
查看>>
MySQL索引介绍及百万数据SQL优化实践总结
查看>>
Mysql索引优化
查看>>
MySQl索引创建
查看>>
mysql索引创建及使用注意事项
查看>>
mysql索引创建和使用注意事项
查看>>
MySQL索引原理以及查询优化
查看>>
Mysql索引合并(index merge)导致的死锁问题
查看>>
MySQL索引和查询优化
查看>>
mysql索引底层数据结构和算法
查看>>
Mysql索引底层结构的分析
查看>>
MySQL索引底层:B+树详解
查看>>
Mysql索引总结
查看>>
mysql索引最左匹配原则理解以及常见的sql使用的索引情况的实测
查看>>
Mysql索引类型
查看>>
MySQL索引背后的数据结构及算法原理
查看>>